Applying a Combined Hydraulic Fracturing, Reservoir, and Wellbore Simulator: Staged Field Experiment #3, Cluster Spacing, and Stacked Parent/Child Frac Hits
Mark W. McClure; Charles A. Kang
2018
SPE-190049-MS
Paper presented at the SPE Western Regional Meeting, Garden Grove, California, USA, April 2018.
This paper describes three applications of a fully integrated hydraulic fracturing, reservoir, and wellbore simulator. The simulator describes hydraulic fracturing, shut-in, and production in a single continuous simulation. It describes multiphase effects (using either the black oil model or a compositional fluid model), thermal effects, transport of tracers and/or non-Newtonian fluid additives, stress shadowing from fracture propagation, and poroelastic stress effects from depletion, and uses a detailed proppant transport algorithm. It uses constitutive relations that smoothly transition from equations for flow through an open crack to equations for flow through a closed crack (with or without proppant). In the first example, we build a simulation model of Staged Field Experiment #3, a well-known historical dataset. Our result is compared with other published simulations and is matched to 15 years of production data. The simulation shows how the transport and settling of proppant in the fracture during injection and shut-in are impacted by processes such as clustered and hindered settling. Gel crosslinking and breaking are described with first-order reaction rate constants. In the second example, we perform a sensitivity analysis on cluster spacing in a generic slickwater fracturing treatment in a horizontal well. The simulations show complex interactions between stress shadowing, fracture propagation, proppant transport, and multiphase flow. The sensitivity analysis indicates that minimizing near-wellbore pressure drop is critical for improving production. Closer cluster spacing decreases near-wellbore pressure drop by providing more conduits for flow. In the third example, we simulate a vertically stacked parent/child scenario. Depletion of the overlying parent well leads to upward propagation from the child well and direct frac hits. The frac hits remobilize proppant as water sweeps into the parent well fractures, displacing gas. In the appendix, we summarize a suite of validation simulations that confirm the numerical accuracy of the simulator.