Abstract
The H1 MDD indicated that the major pressure depletion (drainage) was approximately 500 ft on either side of the lateral. H1 BHP showed local reservoir pressure was 1,000 psi. The initial V1 DFIT showed virgin reservoir pressure, but surprisingly, the 20 bbl DFIT injection was detected on the H1 BHP gauge. Microseismic mapping of the V1 fracture treatment (15 klbs, 600 bbl) showed a planar fracture with a half-length of 1,000 ft. The V1 fracture “hit” the H1, measured by microseismic and confirmed by a 1,650 psi increase in H1 BHP. The microseismic showed a symmetrical fracture, suggesting that the H1 re-pressurization mitigated the detrimental effects of parent well depletion that can cause severe asymmetry. Downhole tilt and microseismic showed fracture height quickly extended downward through the lower Bakken shale into the Three Forks. The V1 was not produced. However, the H1 oil rate doubled after the V1 frac hit, indicating significant stimulation. V1 DFIT #2 showed 1,800 psi depletion, while the V2 DFIT showed approximately 1,000 psi depletion, confirming that the V1 fracture is “flowing” into the H1 lateral 1,000 ft away. The reservoir simulation history match indicated low fracture conductivity, but enough to improve well productivity and drain oil over 1,000-ft from the H1 lateral.
This paper details a comprehensive fracture diagnostic dataset gathered in a unique field laboratory where a single hydraulic fracture from a vertical well is used to characterize fracture conductivity and flowing length.