Abstract
For vertical wells and crosslinked fracture fluid treatments, the fluid flow and suspended proppant transport is effectively “piston” flow and it was a relatively straight forward matter to engineer the near-wellbore region with a tail-in of higher conductivity proppant. For unconventional reservoirs, with multi-stage horizontal completions using slickwater fluids, it has not been obvious how best to create this improved near-wellbore conductivity and most operators have employed a “one size fits all” strategy of pumping a single proppant type unless there was perhaps a need for flowback control in which case a resin coated proppant might be used as a tail-in.
This paper reports the results of two projects to address the engineering of the near-wellbore fracture conductivity for horizontal well fracturing. Firstly, a series of laboratory tests were run in a 10 ft. × 20 ft. slot wall to visualize near-wellbore proppant duning and layering associated with both “lead-in” and “tail-in” designs. The impacts of these depositions were then quantified using a 3D hydraulic fracture / reservoir simulation code for a variety of stimulation designs in the Middle Bakken and Three Forks formations of the Williston Basin.
The results of this work show that well stimulation treatments in liquid-rich unconventional formations would benefit from a combination of small (5 to 10%) lead-ins and tail-ins of high conductivity ceramic proppant. This minimizes the effects of radial flow convergence in the transverse fractures generated from the horizontal well and maximizes the economic benefit of the well stimulation. In addition to paying out the small cost increase in only 1 to 2 months, the proppant bands of higher conductivity ceramic help mitigate the effects of longer-term sand crushing and degradation on near-wellbore plugging and thus increases 3-year cumulative free cash flow and the Estimated Ultimate Recovery (EUR) of the well.