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Abstract 

Real-time fracture treatment optimization has been an aspiration for decades, with modest progress in 
conventional reservoir tip screen-out designs using rapid mini-frac analysis to adjust pad size and proppant 
schedules. Real-time treatment optimization in unconventional reservoirs, once thought to be impossible, 
is now being pursued by operators and service companies. Service companies are automating equipment 
and enabling “intelligent” completions with low-cost measurements, while operators are envisioning 
models that can use these low-cost measurements for real-time optimization. However, the value of real-
time optimization has not been studied. This paper quantifies the likely value of the perfect frac stage. 

The vision of Autonomous and Intelligent Fracturing (AIF) is to enable real-time or stage level 
improvements in treatment design and/or completion strategy. To realize the AIF vision, there are four 
major components that are currently missing: (1) fast optimization models, (2) low-cost measurement 
technologies, (3) reliable fracture geometry control technologies, and (4) the value proposition. This paper 
introduces the AIF vision and discusses ongoing work to develop fast optimization models and low-cost 
measurement technologies, but the focus is on the value proposition. Given the operational and subsurface 
complexities of pad-scale completions and the technology challenges of real-time optimization, we need to 
understand if such an ambitious goal as AIF is worth the cost. This study focuses on the value of the perfect 
fracture treatment stage, defined as achieving the design goal of equal fluid and proppant in every cluster. 

Two modeling studies were conducted to estimate the value of the perfect frac stage, one using a fully 
coupled hydraulic fracture-reservoir simulation model and a second study using a simple fracture-reservoir 
simulation model. The fully coupled model was calibrated using extensive field measurements in the 
Bakken, including DAS measurements of cluster-level fluid distribution, strain measurements of fracture 
morphology, fracture propagation pressures from observation lateral gauges, and microseismic 
measurements of fracture geometry. Both models included five wells and varied well spacing from 440 ft 
to 1100 ft. Cluster-level fluid distribution was varied from poor to an expected base-case to perfect. The 
results suggest that well productivity can be improved by as much as 20% if fluid distribution is poor and 
the perfect stage can be achieved. However, cluster-level fluid distribution may not be “poor” and the 
perfect frac stage may not be attainable. A conservative estimate for the productivity increases with real-
time optimization is discussed in the paper using actual DAS uniformity measurements. 
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Introduction 

Completion optimization is mostly focused on two fronts: (1) evaluation of historical well performance and 
field trials and (2) data gathering projects using advanced measurement technologies. The combination of 
field trials and advanced measurements can lead to more reliable models and faster improvements. 
However, there is still a significant lag between data collection and improvement, presenting an opportunity 
to add value with more timely decisions. The vision of real-time optimization of hydraulic fracture 
treatments has been pursued for decades (Cleary et al. 1988, Meyer et al. 1990), but has not been realized. 
These early attempts at real-time optimization were focused on vertical wells with simple completions; the 
technical complexities of real-time fracture treatment optimization increase dramatically for multi-stage 
plug and perf completions typically used in most unconventional reservoirs. Mondal et al. [2022] provide 
additional historical context. 

Fracture treatment pressures are always “monitored” in real-time to ensure safe operations and avoid 
unwanted screen-outs (Sun et al. 2020). Tip screen-out (TSO) treatment designs are routinely changed in 
real-time using net pressure behavior and in semi real-time using mini-frac data (Rylance et al. 2023). Ben 
et al. [2020], Mondal et al. [2022], and Butler et al. [2022] discuss the use of surface pressures to perform 
specific operational optimizations. However, in most fracture treatments, surface treating pressure does not 
supply sufficient information to reliably characterize completion effectiveness or fracture geometry. 
Unfortunately, hydraulic fracture and completion models are not perfect, and measurements of stage-by-
stage heterogeneity are not precise or reliable. As a result, relying on real-time “predictions” of fracture 
geometry and completion effectiveness are not currently possible. In addition, current fracture models 
capable of capturing the complex behavior of modern plug and perf completions may not provide real-time 
results. Achieving the vision of real-time optimization is not possible without reliable, low-cost, real-time 
measurements to calibrate fracture and completion models. Ramakrishnan et al. [2011],  Paryani et al. 
[2018], and Stark et al. [2020, 2024] discuss real-time optimizations, highlighting workflows that integrate 
measurement technologies. 

Automation and control. Another part of real-time optimization is automation and control, enabling 
optimization models to directly connect and control the fracturing operations. Service companies are 
continuing to automate fracturing operations and integrate measurement technologies, providing the 
foundation for AIF. Automating fracture treatment operations should result in more repeatable operations 
and remove human bias (e.g., rate increase during initial breakdown). The details of these efforts are 
highlighted on service company websites and marketing materials and are not referenced to avoid 
commercialism.  

Real-time or semi real-time improvements. The final component of AIF is implementing real-time changes 
or semi real-time changes that materially improve completion effectiveness. Semi real-time improvements 
could include changes in perforation strategy, stage length, treatment design, and/or cluster spacing. Real-
time improvements could use diverters to improve fluid distribution between clusters or alter far-field 
fracture geometry, adjustments to proppant type or concentration, rate changes, and changes in fluid 
viscosity. The application of diverters to improve completion effectiveness has been widely evaluated 
(Quintero et al. 2024, Ajisafe et al. 2024), but is still not routinely applied due to unpredictable results 
(Murphree et al. 2020). Optimizing limited entry perforation designs has received significant attention and 
is the primary focus for most operators (Somanchi et al. 2017, Cramer et al. 2019, Horton 2021, 
Lorwangngam et al. 2023).  

The value proposition. There is an important, yet unanswered, question concerning real-time fracture 
treatment optimization: “what’s the value?” This question also applies to ongoing efforts to optimize 
completion strategies, including engineered completions (Carpenter 2016) and limited entry perforating. 
Realizing the vison of AIF and optimizing completion strategies requires considerable time and expense. 
However, is the expected value worth the investment? In the operator’s area of interest there are insufficient 
DAS uniformity measurements and corresponding production data to develop a reliable statistical 
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relationship between UI and well productivity. Therefore, to answer this question a detailed modeling study 
was performed and is the focus of this paper. For context, a summary of the AIF vision is provided before 
discussing the value of the perfect frac stage.  

Autonomous and Intelligent Fracture (AIF) 

Butler et al. [2022] introduced the operator’s early vision of AIF, presenting a machine learning model that 
accurately predicted fracture treatment pressures and provided recommendations to improve subsequent 
stages. Figure 1 shows the operator’s early machine learning model that was successfully assessed in 2021. 
The data requirements for this early model were fracture treatment design and completion parameters. Semi 
real-time inputs included rate, treating pressure, proppant concentration, and FR loading.  

The optimization function is simple, providing recommendations to adjust proppant ramp, rate, and FR 
loading to reduce stage time. However, this simple model did not result in significant improvement when 
compared to typical recommendations from completion supervisors.  

The operator’s vision for AIF is shown in Figure 2, illustrating the ambitious goal of predicting stage-level 
production to enable an optimization function that targets value. Realizing this vision requires much more 
sophisticated and fast models that predict cluster-level fracture geometry. These models require real-time 
or semi real-time (i.e., after each stage) measurements of fluid and proppant volume injected into each 
cluster and measurements to constrain fracture length and morphology. Currently, the only reliable real-
time measurement of cluster-level fluid and proppant distribution is cemented fiber optics (Ugueto et al. 
2015, Somanchi et al. 2017). The most reliable real-time estimates of fracture geometry and morphology 
are also provided by fiber optics via offset well strain measurement and microseismic (Chen et al. 2022, 
Cipolla et al. 2022). This highlights two of the four hurdles to achieving the AIF vision: 
 

(1) Low-cost measurement of cluster-level fluid and proppant volume for every stage. 
(2) Real-time fracture and production models. 

Predict Frac 
Surface Pressure

Data Requirements1

• Pressures, rates, prop conc., FR loading/type
• Tubing, casing size
• Perf details, cluster spacing & number, TVD, MD
• Fluids, proppants
• MB or TF

Optimize Stage n+1

Optimization Function
• Target = Stage time
• Design constraints

o Proppant, Fluid
o Rate, Pressure
o FR loading

Note 1: Machine Learning (ML) model is trained 
and continuously updated using historical data.

Stage n+1 design 
sent to service 

company

Stage n+1 design 
implemented in 

automated frac fleet

Figure 1 - AIF: Current Capability 
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There is ongoing work to develop low-cost measurements that can provide estimates of cluster-level fluid 
and proppant distribution (Dunham et al. 2023, Cipolla et al. 2024). And there are efforts to correlate offset 
well pressure behavior to fracture geometry and morphology (Cipolla et al. 2023. Stark et al. 2024). The 
development of these, or other, low-cost measurements will supply the required real-time model inputs for 
AIF (Figure 2).  
      

 
Fast Fracture Modeling. Without fast hydraulic fracture models, achieving the AIF vision may not be 
possible. Current efforts focus on using the fracture geometry and morphology measurements in the Bakken 
(Cipolla et al. 2018, 2020, 2023 and Lorwongngam et al. 2019) to develop simple proxies for fracture 
geometry and morphology. Although the details of fast fracture modeling are beyond the scope of this 
paper, a quick summary is provided to introduce this work. Figure 3 illustrates the measurements and 
relationships used as inputs to calibrate the fast model. The left side of Figure 3 shows that global fracture 
length can be predicted using the stage-level fluid volume injected (upper most curve). A simple length-
volume relationship was developed using microseismic and fiber optic measurements and represents the 
average fracture half-length for a stage as a function of fluid injected (dark green dot). The length of 
individual fractures in each stage is not known (or measured). However, fracture morphology using offset 
well fiber-strain data provides measurements of how many fractures are propagated as a function of distance 
from the wellbore (right graphic in Figure 3, dark red dots represent the average behavior). The center 
graphic in Figure 3 shows a map view of fracture morphology and asymmetry. 

The fracture length-volume and fracture morphology relationships, which can be represented using simple 
equations or proxies, are combined with a statistical algorithm to match the average behavior and variability 
of the actual measurements. This global variability is represented by the light green dots in the left-side 
graphic and light red dots in the right-side graphic. The last component is developing cluster-level length-
volume relations for in-zone and out-zone fracture growth. The “relative” difference between in-zone and 
out-zone fracture growth can be measured, but the length-volume curves are calculated by the algorithm.  

Predict Frac P, cluster-level xf, 
xp, hf, and stage production 

Data Requirements2

• Cluster-level fluid & proppant volume & rate history
• Offset well fracture intersections (morphology)
• Previous fracture geometries on current pad
• Historical production data
• Historical FBHP data
• Geological maps (k, Pi, h, ϕ, TVD, etc.)

Optimize “Current” 
Stage

Optimization Function
• Target = Value 
• Design constraints

o Proppant, Fluid
o Rate, Pressure
o FR loading

Note 2: Includes all previous data requirements.

Design changes 
executed  

autonomously 
in real-time

Real-time input

Training data

Optimize “next” 
Stage

xf = Fracture half-length
xp = Propped half-length
hf  = Fracture height

Figure 2 - AIF: The Vision 
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With inputs of volume injected into each cluster from permanent fiber optics or estimates of stage-level 
fluid Uniformity Index from surface measurements (Dunham et al. 2023, Cipolla et al. 2024), the model 
predicts the length of each fracture using the cluster-level in-zone and out-zone curves. This is illustrated 
in Figure 3 for a six-cluster stage (left graphic, bottom two curves), with different fracture lengths for each 
cluster predicted using the in-zone (small red dots) and out-zone (small black dots) length-volume curves. 
The model then uses variations in asymmetry for each fracture to match the morphology behavior (right 
graphic in Figure 3).  

Sufficient cluster-level and stage-level variations in fracture length and asymmetry are introduced by the 
model to reproduce the variability of the measured data. For example, some stages may have a longer or 
shorter fracture length than predicted by the global length-volume relationship (light green dots, left graphic 
in Figure 3), but the well-level average fracture length will honor the global relationship (dark green dot, 
left graphic in Figure 3). And some stages may have higher or lower morphology than predicted by the 
average morphology curve (light red dots, right graphic in Figure 3), but the well-level average morphology 
will honor the global morphology curve (dark red dots, right graphic in Figure 3). Examples of global 
length-volume and morphology curves are shown in Figures 9 and 12 of SPE 209164 (Cipolla et al. 2022), 
illustrating the average behavior and variation in measurements. Early versions of the fast frac model are 
currently being evaluated and work is ongoing to link the frac model to fast production forecasting models.  

 

Uniformity Index and The Perfect Frac Stage 

Cluster-level fluid distribution can be determined in real-time using cemented fiber DAS measurements. 
These measurements are used to evaluate completion effectiveness and typically reported using the 
Uniformity Index (UI). 

(1) UI = 1 – σ/ȳ  where: 

σ = standard deviation of cluster-level measurements 

ȳ = mean of the cluster-level measurements 

Figure 4 provides examples of a poor UI and a good UI, showing that fluid distribution can vary 
considerably from cluster-to-cluster even with a relatively good UI. When UI is poor, some clusters may 
receive little fluid. Figure 5 shows the ideal fluid distribution or perfect frac stage, with all clusters 
receiving the same amount of fluid. Note that the illustrations of UI assume that all clusters breakdown and 
accept fluid. This is consistent with the operator’s DAS, perforation imaging, and proppant tracer data 
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showing that virtually all clusters are being treated, with DAS measurements routinely showing 100% 
cluster breakdown (Cipolla et al. 2022,  Lorwongngam et al. 2023).  

A perfectly even distribution of fluid in every cluster may not ensure uniform fracture geometry from each 
cluster, as stress shadowing will likely result in some degree of non-uniform or asymmetric fracture growth. 
The left graphic in Figure 6 illustrates the concept of fracture morphology, where stress shadowing and 
uneven fluid distribution will result in asymmetric and uneven fracture growth. In each stage, some fractures 
may propagate much farther in one direction (asymmetry) and some fractures may be much shorter or 
longer due to nonuniform fluid distribution (low UI). The perfect frac stage, although very unrealistic, 
would result in uniform fluid distribution and the same fracture geometry in all clusters (right side of Figure 
6). The next step is to quantify the value of achieving the perf frac stage.  

  

 
 

Fiber

500 bbl 500 bbl

1000 bbl

1300 bbl

800 bbl
700 bbl

200 bbl

1900 bbl

200 bbl

400 bbl

100 bpm
6.7 bpm 6.7 bpm

25.3 bpm
9.3 bpm 17.3 bpm

2.7 bpm 2.7 bpm
13.3 bpm

5.3 bpm 10.7 bpm

UI = 0.33 (poor)

Fiber

500 bbl 500 bbl

1000 bbl 900 bbl 900 bbl
700 bbl 750 bbl

1000 bbl

550 bbl
700 bbl

100 bpm
6.7 bpm 6.7 bpm

13.3 bpm
9.3 bpm 12 bpm

7.3 bpm 10 bpm
13.3 bpm

9.3 bpm 12 bpm

UI = 0.75 (good)

Figure 4 - Illustration of poor UI (top) and good UI (bottom). 

100 bpm 10 bpm 10 10 bpm1010101010 10 10

750 bbl 750 bbl

Fiber

UI = 1 (perfect)

Figure 5 - Illustration of the perfect frac stage. 
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Modeling Study – The Value of the Perfect Frac Stage 

The AIF vision is ambitious, requiring substantial time and cost to overcome the three key obstacles 
previously discussed: (1) fast optimization models, (2) low-cost measurement technologies, and (3) reliable 
fracture geometry control technologies. The final obstacle is understanding the “size of the prize” to ensure 
the substantial effort to realize the AIF vision is justified. Two modeling studies were conducted to predict 
the production improvement and value of the perfect frac stage; one using a fully coupled hydraulic fracture-
reservoir simulation model and a second study using the same reservoir simulation model with pre-existing 
fractures.  
 
The fully coupled hydraulic fracture-reservoir simulation model was calibrated using the comprehensive 
dataset from the operator’s Observation Lateral project (Cipolla et al. 2022). The fracture model accurately 
reproduced the fracture geometry, morphology, and unique fracture pressure behavior from the observation 
lateral gauges. The reservoir model was calibrated to match the production history, BHP behavior, and 
drainage pressures. The fracture and reservoir model calibration process using the operator’s loosely 
coupled model and detailed measurements are illustrated in SPE 209164 (Cipolla et al. 2022). This study 
used a fully coupled model, but the calibration process was similar. More details of the fully coupled model 
and the calibration process are provided in Appendix 1. 

Although the results from the fully coupled model are considered the most realistic, a second study was 
performed where the hydraulic fracture geometries could be directly input into the same reservoir 
simulation model. The hydraulic fracture lengths were calculated using a simple fracture model, where 
fracture length is directly calculated using the cluster-level fluid volume. Fracture conductivity was 
assumed to be proportional to the cluster-level fluid volume and propped length estimated using a 
percentage of the total length. The fracture conductivity reduces with effective normal stress. This simple 
approach resulted in more control of fracture geometry inputs for the reservoir simulations, with the intent 
of comparing the results from the simple model and fully coupled model to ensure the overall conclusions 
are not dependent on the details of fracture geometry (e.g., stress shadowing, asymmetry, etc.).  

All the models included five Middle Bakken wells and ~1200 ft lateral sectors with 33 ft cluster spacing 
(36 clusters total). The fully coupled model simulated three stages with 12 clusters per stage. Treatment 
designs were held constant at 1000 bbls/cluster and 40,000 lbs/cluster using a 50/50 mixture of 100-mesh 
and 40/70 sand. Four well spacings were modeled to evaluate the impact, if any, of well spacing on the 
value of the perfect frac stage: 440 ft, 660 ft, 880 ft, and 1100 ft.  

Uniformity index. Three different UI cases were modeled, with the base case UI consistent with the 
operator’s DAS measurements showing an average UI of ~0.75 and a standard deviation of 0.09. The 
standard deviation was used to ensure variations in the model UI were consistent with DAS measurements. 

100% 70% 40% 10%

xf

Illustration of Fracture Morphology The Perfect Frac Stage

Figure 6 - Fracture morphology and the perfect frac stage 
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The standard deviation was assumed to be higher when UI is low and, conversely, lower when UI 
approaches 1. A low-case UI of ~0.25 with a much higher standard deviation of 0.22 was modeled to 
evaluate the cost of “getting it wrong”. This case highlights the cost of poor performance due to problems 
such as plug failures, crossflow outside the casing due to poor cement, insufficient limited entry, etc. The 
perfect frac stage was modeled using a UI of 0.95 or higher and standard deviation of  0.04 or lower.  

Scenarios are generated with different uniformity index by changing: (a) the random variance in initial 
perforation diameter, and (b) constants that affect the magnitude of perforation erosion. The near-perfect 
UI scenario assumes a uniform initial perforation diameter and zero erosion. The modeling assumed that 
proppant placed in each cluster is proportional to the cluster-level fluid volume. Recent studies show that 
wellbore proppant transport is a complex process and cluster-level proppant distribution may be 
significantly different than fluid distribution (Dontsov et al. 2024). The impact of wellbore proppant 
transport is currently being evaluated and not included in this study. 
 
Fracture geometry and drainage patterns. Figure 7 shows examples of the fracture geometries (upper 
graphics) and drainage patterns (lower graphics) predicted by the fully coupled model, illustrating the 
highly variable fracture lengths and uneven drainage pattern associated with low UI and the more uniform 
fracture lengths and drainage with the base case UI. The perfect UI case shows very uniform fracture lengths 
and drainage. The negative effect of low UI on depletion is partially mitigated by well-to-well interaction. 
Regions with less fracture placement have weaker stress shadowing, making it somewhat more likely that 
fractures from the adjacent wells will propagate into these regions (See Appendix 2).  

Figure 9 shows an example of the input fracture lengths and conductivities used in the simple modeling 
study. With this simple approach, perfectly uniform fracture lengths and conductivities can be input into 
the reservoir model. A heel bias in fluid distribution was assumed for the base and low UI cases, resulting 
in shorter fractures in the toe cluster and longer fractures in the heel clusters. The simple model shows much 
less heterogeneity in fracture geometry compared to the fully coupled model, which was a goal of the 
comparison.  

Figure 7 - Fully coupled model results showing fracture geometries (upper graphics) and drainage patterns (lower 
graphics) for low, base, and perfect UI cases. 
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Production and economics. Figure 8 shows the impact of UI on 1-year cumulative production predicted 
using the fully coupled and simple models (fully coupled model = dots, simple model = triangles). All four 
well spacings are shown and differentiated by color, but not all symbols are visible due to similarity of 
results. The production results are presented as a percentage of the base case UI production, with the base 
case results on the zero % line (y-axis). The UIs for each case in the fully coupled model vary somewhat 
due to the distribution of parameters used to simulate the different UIs in each model. The UIs for each UI-
group in the simple model are the same since they are input parameters. The results from the fully coupled 

Figure 9 - Example of fracture lengths and conductivity used for the simple model. 

Figure 8 - Impact of UI on 1-year production, simple and fully coupled model. 
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model and simple model follow the same trend, suggesting the learnings from this work are not dependent 
on the model. Appendix 2 compares the two modeling results in more detail. 

Although the results vary somewhat, the general trend is clear, showing a range in 1-year production of 
about 20%. If UI can be increased from 0.25 to 0.75, a production increase of 10% in the first year is 
predicted. The benefits of increasing UI are much less as the average UI improves. First year production 
increase is about 6% when UI is improved from the base case of 0.75 to almost 1. The benefits of improving 
UI diminish as production time increases, with the simulations showing an increase of 10% in 10-year 
cumulative oil when UI is improved from 0.25 to 0.9-1.  

The economic impact of variations in UI was estimated using typical Bakken well costs and evaluation 
parameters. Net present value (NPV) is based on 10-year production. The details of the economic inputs 
are considered sensitive information, but the results should be representative for Bakken development. 
Figure 10 shows the economic impact using the results from the fully coupled model. There is a range of 
about $2.5 million per well from the low-case UI to the high-case UI (perfect frac stage), while the increase 
from the base-case (UI=0.75) is about $1 million per well. There are variations in the results for each UI-  
group due to well spacing, but the trends are consistent. Every 0.1 improvement in UI is predicted to  
increase first year production about 2.5% and add about $0.3 million in NPV. 

Conclusions - Value of the Perfect Frac Stage 

The detailed hydraulic fracture and reservoir simulations show improving UI results in material increases 
in production and NPV. These simulations do not capture all the benefits of real-time optimization but 
provide a basis to evaluate the potential value of AIF and ongoing efforts to improve completion 
effectiveness. Although the modeling is specific to the Bakken, the learnings will likely be applicable when 
estimating production improvement with increasing UI in other unconventional reservoirs. However, with 
recent advances in limited entry perforating design, how much opportunity for improvement remains? 

The operator’s data shows UIs averaging about 0.75 from DAS measurements, suggesting a maximum 
opportunity for improvement of 0.25 if a UI = 1 could be achieved. However, recent comparisons of DAS 
measurements and perforation imaging suggest that DAS-measured UIs may be optimistic (Cramer et al. 

Figure 10 - Incremental Net Present Value, baseline = low case UI 
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2024), overpredicting UI by 0.1-0.2. Therefore, it is possible that the operator’s UIs could be as low as 0.55 
(i.e., 0.2 lower that the DAS average of 0.75), presenting an opportunity to improve UI by 0.45 if a perfect 
UI could be achieved. Unfortunately, it is unlikely that a perfect UI can be achieved given the complexities 
of stress shadowing, proppant erosion, etc. Therefore, a UI = 0.9 may be the upper limit, resulting in an 
opportunity range of 0.15 to 0.35 (current completions = 0.55-0.75 and best cast = 0.9).  

If UI can be improved from 0.75 to 0.9, the potential value is about $0.45 million per well. The potential 
value is over $1 million per well if UI is increased from 0.55 to 0.9. The operator’s near-term plan is to drill 
over 100 wells per year, resulting in a potential value of $45 million per year or more if the AIF vision is 
realized and UI can be increased. There are still numerous complexities and hurdles to overcome before 
AIF can be a reality, but continued efforts to advance limited entry designs will likely improve UI and 
create significant value.  
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Nomenclature 

AIF    = Autonomous and Intelligent Fracturing 
BHP    = bottom hole pressure, L2 
bbls    = barrels, L3 
DAS    = Distributed Acoustic Sensing 
EUR    = Estimated Ultimate Recovery 
ft    = Feet, L   
FR    = Friction Reducer 
k    = permeability, L2 
LBS    = Lower Bakken Shale 
MB    = Middle Bakken 
md    = Millidarcy, L2  
MD    = Measured depth, L 
mln    = million 
NPV    = Net present value, $ 
p     = pressure, F/ L2 
Pi    = initial reservoir pressure, F/L2 
POP    = Put-on-Production, start of production 
RA    = radioactive 
STB    = stock tank barrels, L3 
TF    = Three Forks 
TSO    = Tip Screen-out 
TVD    = True Vertical Depth, L 
UI    = Uniformity Index 
xf     = hydraulic fracture half-length, L 
o    = degrees 
µ    = average 
ϕ    = porosity 
σ    = standard deviation 
ȳ    = mean 
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SI Metric Conversion Factors 
acre   x 4.046 873e+03  = m2 
bbl   x 1.589 874e-01  = m3 
cp   x 1.0e-03   = Pa.s 
ft   x 3.048e-01  = m 
oF    (oF – 32)/1.8  = oC 
lbm/gal  x 1.198 264e+02  = kg/cm2 
psi   x 6.894 757e+00  = kPa 
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Appendix 1 - Details of the Numerical Simulator and Model Calibration 
 
The simulations are performed with a combined hydraulic fracturing, wellbore, and reservoir simulator 
(McClure et al., 2023). In every timestep, the simulator solves: (a) mass balance on fluid components 
(water, oil, and gas, when using the black oil model), water solute components (such as friction reducer), 
and user-defined proppant types; (b) fracture mechanics equations for propagation and stress shadowing; 
(c) poroelastic stress changes from pore pressure changes in the matrix; and (d) momentum balance in the 
wellbore elements. The simulator is a ‘true’ hydraulic fracturing simulator, in the sense that it meshes cracks 
as cracks and incorporates realistic equations for proppant transport and fracture opening and closure. The 
fracture mesh is nonconforming to the global matrix mesh. A local grid refinement technique is used to 
capture fluid exchange between the fracture and matrix elements (Section 2.3 from McClure et al., 2023). 
To increase resolution and accuracy, the simulator tracks the position of the crack-tip within each fracture 
element, using the technique developed by Dontsov et al. [2022]. 
 
Model calibration. A model was built and calibrated based on the observation lateral pad described by 
Cipolla et al. [2022]. The history match is based on (Figure 11): (a) Cluster efficiency from fiber and 
downhole camera observations, (b) Production volumes, oil rates, water cut and GOR for parent and child 
wells. Production performance between the wells based on vintage and position was also matched, (c) 

Changes in production rates in the parent well caused by frac hits from the children wells, (d) Fracture 
morphology parameters including dimensions based on fiber and microseismic, volume to first response 
based on fiber observations and facture net pressure from cemented downhole pressure gauge observations 
during the stimulation, (e) Far-field depletion from offset pressure gauges, (f) Pressure communication at 
POP was calibrated to the interference tests.  

Figure 11 - Examples from the observation lateral model calibration. 
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Appendix 2 – Simple and Fully Couple Model: Comparing Results 

This appendix provides more details and examples comparing the fully coupled and simple models. As 
discussed, the intent of the two-model approach was to ensure that the conclusions from this study were not 
unduly dependent on the modeling approach. 

Utilizing the parameters from the calibrated model, the generic five-well model was set up as a base case 
simulation for the sensitivity analysis. The simulations include both fracturing and production. Figure 12 
shows results from the baseline scenario. Stress shadowing causes the fracture geometry to be variable and 
asymmetric even in the case with the perfect UI. This fracture morphology is realistic and has been 
calibrated to match the timing and quantity of frac hits in the offset wells. In addition, stress shadowing 
balances with limited-entry pressure drop to determine the perforation efficiency. 

For additional sensitivity analysis, simulations were run with an idealized geometry. These models assume 
symmetric, rectangular fractures. Fracture length is determined from fluid allocations using a simple power 
law function and propped length is assumed to be a fixed percentage of total length. The length of the 
fractures represents the propped length. Individual fractures in these simulations are assumed to have a 
constant fracture conductivity. Shorter fractures are given lower conductivity, under the assumption that 
they receive less proppant. Figure 13 shows an example of the simple model, illustrating the more uniform 
distribution of fracture lengths that are manually input into the model. A heel bias was assumed, with more 
fluid and longer fractures in the heel clusters of each stage and less fluid and shorter fractures in the toe 
clusters.  
 
The percentage change in 10-year cumulative oil production is shown in Figure 14 for the simple and fully 
coupled models. The zero line is defined by the 10-year production for base-case UIs. The results for both 
models at the lower range of UIs falls on the same general trend. However, both models show more variation 
due to well spacing, especially at the high range of UIs. And the variation is different; for example, when 
UI is 0.9-1 the fully coupled model shows that the improvement in 10-year production decreases as well 
spacing increases and the simple model shows an opposite trend. The difference in behavior is primarily 

Figure 12 - Fully coupled model, baseline scenario, using observation lateral calibrated model parameters.  
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linked to the degree of heterogeneity in fracture lengths, with relatively uniform fracture lengths in the 
simple model and a large variation in fracture lengths in the fully coupled model (reference Figure 12 and 
Figure 13).  

Figure 15 compares the incremental NPV for the two models, showing that the results from the simple 
model vary dramatically with well spacing. Figure 16 and Figure 17 illustrate the drainage differences 
between the low UI and perfect UI cases for the 440 ft and 1100 ft well spacings, respectively. The results 
for the fully coupled models using larger well spacing show regions of lower depletion between the wells 
(see Figure 17) even in the case of the perfect uniformity index driven by stress shadow effects and the 
resultant fracture shapes. For the 440 ft well spacing, almost the entire area between the wells shows near 
uniform depletion (Figure 16a), while the low UI case shows significantly more patches of lower depletion. 
In contrast, for 1100 ft well spacing, even the perfect UI cases shows narrow undepleted channels between 
the wells (orange colored region between the wells in Figure 17a) as the productive propped length is lower 

1100 ft well spacing

440 ft well spacing

Figure 14 - 10-year production comparison, simple and fully coupled model. 

Figure 13 - Example of a simple model. 

Heel bias
More fluid, longer fractures

Toe Clusters
Less fluid, shorter fractures
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compared to the well spacing. For the Low UI case however, some of the longer fractures can place proppant 
larger distances which negates the effect of the low UI to some extent.  

Figure 16 - a) Post-production pressure depletion for a geological layer below the landing zone is 
shown for 440 ft well spacing in the perfect UI case: b) Pressure depletion for the 440 ft well spacing 
in the low UI case. Note the higher area covered the yellow patches for the low UI case which leads 
to sub-optimal drainage. 

Figure 15 - NPV comparison, simple and fully couple model. 
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Figure 17 - a) Post-production pressure depletion for a geological layer below the landing zone is shown for 
1100 ft well spacing in the perfect UI case. The orange-colored un-depleted regions in between the wells show 
sub-optimal depletion: b) Pressure depletion for the 1100 ft well spacing in the low UI case. Note the reduction 
in the orange regions for the Low UI case. This effect is seen more strongly for the baseline UI case.  


