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Abstract 

In 2023, Chesapeake Energy and ResFrac created the first-ever framework for hyper-calibration that 

includes time-lapse interference testing data in addition to using industry-standard data. The project aimed 

to develop a set of model parameters for predicting fracture and production characteristics within 

Chesapeake’s Haynesville asset. Rate Transient Analysis (RTA) and analytical models were insufficiently 

detailed to explain productivity changes over time and required non-generalizable corrections. A fully 

coupled hydraulic fracture, reservoir, and geomechanical numerical modeling approach successfully 

described the observed historical production across a defined region. Data used for modeling included 

time-lapse interference tests, treating pressures, perforation imaging data, laboratory data, and production 

histories. The project was set up in three primary phases, which can be described as follows:  

• Phase 1 Calibration – Initial Base Model: Stress profile calibration and parent well history match

• Phase 2 Calibration – Time-Lapse Interference Test: Measured and matched conductivity loss using

Devon Quantification of Interference (DQI) 

• Phase 3 Calibration – Model Validation Using Child Wells: Applied calibrated fracture and

reservoir model to offsetting wells 

Investigation in Phase 1 indicated that individual mechanisms for Stimulated Rock Volume (SRV) 

degradation could account for some of the observed production trends. However, additional investigation 

with Phase 2 was necessary to find the unique combination of stress and time-dependent conductivity 

degradation, proppant conductivity characteristics, and matrix compaction curves necessary to capture the 

measured conductivity loss and production responses. In Phase 3, model parameters replicating 

interference testing results successfully predicted the performance of adjacent pads with differing 

completion designs in the area of interest, establishing high confidence in model predictivity. 

http://www.urtec.org/
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1. Introduction

1.1 Background 

The Texas-Louisiana Salt basin containing the Haynesville and Bossier shales is the third largest natural 

gas resource play in the United States, with 56.2 Tcf of proved reserves as of 2021 (EIA 2022). Situated 

across more than 16 counties in Northeast Texas and Northwest Louisiana, the Haynesville Shale consists 

of “a dark, organic-rich, mudstone-marl facies with ubiquitous pyrite” (Torsch 2012). It is overlain by the 

Bossier Shale, followed by the Cotton Valley Sandstone, and underlain by the Smackover Limestone (in 

Louisiana). 

Figure 1. Haynesville Shale Basin Overview 

The Haynesville is generally characterized by porosities averaging 8-12%, water saturations of 20-30%, 

reservoir thicknesses of 200 to 300 ft, and nanodarcy permeabilities (Torsch 2012). Unique to many shale 

gas plays, the Haynesville reservoirs have true vertical depths (TVD) greater than 11,000 ft and are 

heavily overpressured (Parker et al. 2009; Hammes et al., 2011; Thompson et al., 2010). These elevated 

pore pressures with gradients often greater than 0.9 psi/ft make the Haynesville particularly attractive as 

they enhance porosity, gas content, apparent shale brittleness, and well deliverability (Torsch 2012). 

Initial production rates (IPs) are greater in comparison to other shale-gas plays but also exhibit steeper 

first-year declines (Hammes et al., 2011). 

This behavior presents a unique challenge for integrated modeling and development planning at the 

pad/unit scale. Various mechanisms account for the rapid decrease in well productivity. Each mechanism 

has different implications for the spatial distribution of depletion, leading to complexity when choosing 

optimal configuration and completion designs for new development wells.  
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In 2023, Chesapeake Energy embarked on an effort to establish new models and calibration frameworks 

for their Haynesville acreage. As the Haynesville asset matures, additional development frequently offsets 

existing producer or “parent” wells. Subsequent development offset to a parent well is defined as a 

“child” well. Due to this existing landscape, new projects need to consider not only the petrophysical 

mechanisms that cause productivity degradation but also how those mechanisms interact with child well 

“frac hits” on parents and preexisting parent well depletion (King et al., 2017). Previous efforts leveraging 

analytical modeling and RTA workflows proved difficult to match early-time and late-time trends. More 

importantly, correction techniques were insufficiently constrained and non-transferrable between wells of 

multiple vintages and/or completion designs. 

For this study, we utilized a fully coupled, physics-based, ‘true’ hydraulic fracturing and reservoir 

simulator to establish a consistent set of model parameters to predict fracturing and production 

characteristics across the acreage position in a holistic manner (McClure et al., 2023). Time-lapsed 

interference tests, treating pressures, perforation imaging data, and production histories for 10 wells of 

various designs and vintages were leveraged to create simultaneous matches for each well. History 

matches honored the conductivity degradation as a function of bottom hole pressure (BHP) measured 

through the interpretation of the time-lapsed interference tests with the DQI method. History matches also 

honored the interactions between parent and child wells observed in the region. 

These calibrated models helped answer questions regarding the optimization of spacing and completion 

design, plan stacked Haynesville and Bossier development scenarios, visualize and understand the impact 

of fracture geometry in the context of shrinking SRV with increased drawdown, and test the impact of 

depletion on child well performance. 

1.2 Single Layer Numerical Model 

In dry gas reservoirs, RTA techniques and numerical modeling have been acknowledged as reliable 

methods for characterizing well productivity; they are particularly useful for comparative assessments of 

well performance. However, extreme depths (TVD) and high reservoir pressures within the Haynesville 

and Bossier shales present unique challenges. These factors render existing simplified RTA techniques 

and numerical modeling less effective in fully capturing the complexity of well productivity signatures. 

A common practice in simplified numerical modeling involves employing Pressure Dependent 

Permeability (PDP) as a principal means to account for observed declines in productivity. However, the 

Pressure Dependent Permeability curve has limitations in accurately representing the complete pattern of 

productivity decline over the well's lifecycle. As reservoir pressure decreases with production, the PDP 

curve suggests a corresponding decrease in permeability, leading to diminishing productivity. This curve 

assumes that the fundamental mechanism behind this reduction in productivity is the pressure-driven 

decrease in permeability. Further details on RTA will be elaborated in Section 1.4. 

To mitigate the observed decrease in Stimulated Reservoir Volume (SRV), a temporary "band-aid" 

solution involves incorporating a negative half-length to represent the shrinking SRV (Figure 2). 

Although this method offers a means of characterization, it is inherently limited to snapshots in time and 

cannot accommodate the dynamic nature of reservoir behavior over time. Applying a reduction in SRV 

through a half-length adjustment at a singular moment is insufficient for achieving an accurate history 

match in simple, single-layer numerical models. Multiple adjustments are often necessary to accurately 

simulate the reservoir's behavior, which may lead to a history match with an improved correlation but 

fails to capture the underlying system dynamics. This approach also complicates understanding the 

relationship between the initial SRV and the percentage of degradation applied at specific times. 

Therefore, a more sophisticated solution is required to define the complex interplay between SRV 

degradation and well productivity. 
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Figure 2. Example comparison of single-layer numerical models with (right) and without (left) including periodic negative half-length 

adjustments.

1.3 Data Availability / Calibration Techniques 

Numerical modeling efforts are challenging in that the solutions generated are non-unique. While 

attaining a model that perfectly captures the complexities of fracture propagation and reservoir depletion 

is not easily achieved, the technical team sought to approach this ideal as closely as possible. This was 

accomplished with the incorporation of multiple constraints including standard calibration techniques 

included below: 

• Core Calibrated Petrophysical and Geomechanical Model Utilizing the following logs

o Gamma Ray, Resistivity, Density / Neutron, and Dipole Sonic

• Laboratory Data

o Porosity, Water Saturation, and Permeability

o Triaxial Core Data

o Embedment

o Pressure Dependent Permeability

• Fracture Driven Interactions (Frac Hits)

o Matching observed child well pressures and impact on parent well

• Historical rates and pressures

In addition to standard techniques, the technical team focused the modeling project on an area of data 

abundance. It was believed that the combination of the following constraints would result in increased 

model uniqueness and predictivity: 

• Time-Lapse Interference Testing (DQI)

• Eleven Toe DFIT tests over multiple landing zones

• Post Frac Perf Evaluation

• Variety of development styles, completion vintages, and landing horizons included in the

model

o Completion Design

o Spacing

o Parent / Child

o Multiple Horizon Co-Development

The most distinctive aspect of the data utilized to refine the model was the implementation of 3 time-lapse 

DQI interference tests over a twelve-month period. These tests were particularly noteworthy as they 

provided insights into the evolution of well communication over time, shedding light on the dynamics of 

what was believed to be a shrinking SRV, as mentioned in Section 1.2. With this data, the team aimed to 

gain a deeper understanding of the mechanisms driving conductivity reduction, thereby enhancing the 

model's accuracy. 
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Additionally, the dataset included a comprehensive collection of DFIT data points, incorporating both 

legacy data and DFIT data obtained through Chesapeake Energy’s acquisition of Vine Energy. The 

interpretation of eleven toe DFITs proved invaluable, offering a detailed vertical stress profile within the 

zone of interest. While it is customary to have representative DFITs across a field, the abundance of data 

in this area provided an exceptional opportunity for refined calibration of the vertical stress profile. 

Figure 3. Regional Data Availability. As referenced in Figure 5, Phase 1 and 3 wells are outlined in green; Phase 2 wells are outlined in blue. 

1.4 Physical Mechanisms for Conductivity Degradation 

Rate Transient Analysis (RTA) is a common means of normalizing ‘production rate versus time’ trends to 

compare wells that may have different drawdown histories. By plotting the reciprocal productivity index 

on the y-axis against the square root of ‘material balance time’ on the x-axis (Belyadi et al., 2015; Jha and 

Lee, 2017), flow regime changes and/or other productivity changes due to depletion can be easily 

identified. Unconventional plays most commonly exhibit (at least initially) a ‘linear flow’ regime. On 

RTA plots, this flow regime is a straight line with a slope inversely proportional to 𝐴√𝑘, effective 

fracture surface area and permeability. The greater the effective surface area available to flow or the 

permeability of the contacted area, the shallower the slope of the curve. 

A generic “type” well for Haynesville gas production shows high initial rates with steep declines 

(Thompson et al., 2010). In the context of RTA, this behavior manifests as a short linear period with a 

shallow slope followed quickly by a large upward bend. Fowler et al. (2020) identifies four motifs that 

could potentially cause deviation from a linear flow regime and an upward bend in RTA: (a) matrix 

permeability, (b) fracture conductivity, (c) distance to reservoir ‘boundaries,’ and (d) GOR and bubble 

point. 

For dry gas reservoirs, multiphase effects would not be applicable as only one hydrocarbon phase is 

present regardless of reservoir pressure. Interference between adjacent clusters in a multi-stage horizontal 

well also manifests as an upward curvature in RTA. While cluster interference can manifest in RTA 

signatures in the Haynesville, deviation from linear flow often appears to occur far earlier than estimates 
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from a simple radius of investigation calculation would suggest. This leaves us with permeability and 

fracture conductivity. 

As noted in Section 1.1, the Haynesville Shale exhibits high pore pressures with minimal separation 

between pore pressure and the minimum horizontal principal stress (i.e., low effective stress). As pressure 

depletion occurs, effective stress can increase by over an order of magnitude, resulting in a reduction in 

permeability (Heller et al., 2014). This pressure-dependent permeability (PDP) manifests as an upward 

curvature in RTA; as pressure declines at the well during production, the region of reduced permeability 

grows with the region of pressure depletion, decreasing the effective permeability “felt” by the well. Lab 

data on pressure-dependent permeability for this project is discussed in Section 2.3 

In an RTA context, fracture conductivity is most commonly used to match a y-intercept; finite 

conductivity fractures in which flow into the well is conductivity constrained will create a y-intercept 

greater than 0 in a plot of reciprocal productivity index (RPI) versus square-root material balance time 

(Fowler et al., 2020). However, if you think of the area side of 𝐴√𝑘 as the amount of effective surface 

area that can be accessed at any point in time, there are several fracture and proppant characteristics that 

can reduce that area as a function of stress and/or time. Proppant pack conductivity naturally decreases as 

a function of net effective stress due to compaction and crushing. Proppant embedment physically reduces 

the propped area by reducing the effective proppant concentration across the fracture, particularly in areas 

of high-stress or relatively soft formations (Cipolla et al., 2008). Lastly, fines migration, diagenesis, or 

other chemical effects can reduce proppant pack conductivity as a function of time. Studies have shown 

that time-dependent factors have been important in matching field data in the Bakken and Permian 

(Pearson and Fowler, 2022). 

1.5 Pressure Interference Test Interpretation 

Interference testing is a relatively inexpensive means of assessing the strength of hydraulic connections 

between wells. In a standard pressure interference test, one or more wells are sequentially placed on 

production after being shut in. Changes in the pressures measured in offset well(s) can be interpreted to 

yield information on the connections between wells and potential interference. 

The ‘Devon Quantification of Interference’ (DQI) method introduced by (Almasoodi et al., 2023) takes a 

novel approach to directly calculate the fracture conductivity between two wells in an interference test. 

The DQI method starts by performing a curve fit to the initial pressure response at the monitoring well. 

Observed from an offset position, the 1D diffusivity equation is: 

𝑃(𝑦, 𝑡) − 𝑃(𝑦, 0) =
2𝑞0√

𝛼𝑡

𝜋

𝐾
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4𝛼𝑡
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𝑞0𝑦

𝐾
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𝑦

2√𝛼𝑡  
), (1) 

where qo is the production rate per fracture (in reservoir volume, not surface volume), y is the offset 

distance, 𝛼 is the hydraulic diffusivity, and K is a lumped parameter. The measured pressure transient can 

be matched by varying the parameters K and 𝛼. They are defined as: 

𝛼 =
𝑘𝑓𝑊

𝜇 (
𝑑𝑊

𝑑𝑃
+𝑐𝑓𝑊)

=
𝐶

𝜇 (
𝑑𝑊

𝑑𝑃
+𝑐𝑓𝑊)

, (2) 

𝐾 =
𝐶𝐻

𝜇
, (3) 

where C is fracture conductivity, kf is fracture conductivity, W is fracture aperture, cf is the fluid 

compressibility, μ is the fluid viscosity, and H is the fracture height. 

While matching a full pressure transient of an interference test would be complex and unpractical, the 

objective of the curve fit with Equation 1 is to focus solely on matching the initial pressure response at 

the monitoring well. The arrival of the pressure transient is dependent only on hydraulic diffusivity, 𝛼, 
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and is not affected by uncertainties in flow geometry, K, drawdown rate at the production well, or any 

other parameters. 

Given a value of hydraulic diffusivity, the fracture conductivity can be estimated by plugging into 

Equation 2. When applying Equation 2, the fluid compressibility and viscosity should be estimated from 

the fluid in the fracture during the test. The values of fracture aperture and its derivative, W and 
𝑑𝑊

𝑑𝑃
, can 

be assumed to be 0.03 inches and a range of 2e-6 to 8e-6 inches/psi, which are reasonable estimates for 

propped fractures (Almasoodi et al., 2023). 

Figure 4. Example of the plots required for interpreting an interference test using the DQI method. a) Pressure observations in a monitoring well 
before and after an offset well is put on production. The timing of the offset well POP (Put on Production) is marked by the vertical black line, 

indicating the beginning of the interference test. The orange line shows the linear trend of the pressure before interference which is extrapolated 

to the interference test time period to calculate Δ𝑝; b) Δ𝑝 and t
dp

dt
 observed during the interference test; c) Δ𝑝 and t

dp

dt
 from the analytical solution 

(black and blue lines) are fitted to the pressure and derivative observations by a trial and approach varying 𝛼 and K, to find a good fit. 

Reproduced from (Almasoodi et al. 2023)).

For the purposes of this project, we utilize this DQI methodology for interference test interpretation as it 

yields an understood physical parameter that can serve as a direct history-matching parameter in the 

numerical simulator. 

1.6 Details on the Numerical Simulator 

A fully coupled hydraulic fracturing, reservoir, and geomechanics simulator was used for this project. 

McClure et al. (2023) provide full details of the software. The simulator represents hydraulic fractures as 

true fractures, with apertures (element widths) on the order of millimeters for the entire simulation 

duration. Matrix elements are represented by volumetric elements in a rectilinear grid. The wells are 

meshed to the surface with linear elements. A specialized ‘1D submesh method’ (McClure et al., 2023) 

couples these nonconforming meshes, maintaining numerical accuracy even with coarse matrix element 

sizes. At every time step, the simulator satisfies mass balance for all fluid components, water solutes, and 

proppant types. In the wellbore, momentum balance is satisfied. Fracture propagation is modeled with the 

MuLTipEl algorithm developed by Dontsov (2022). The code also employs complex mechanisms for 

proppant transport, including gravitational settling, viscous drag, proppant bridging, and the smooth 

transition from slurry flow through an ‘open’ fracture to fluid transport through a ‘closed’ fracture. 
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Several key simulator capabilities enable the realistic representation of multi-well pads, parent-child 

effects, and the physical mechanisms underlying well productivity degradation: 

• The simulator solves the equations of linear elastic continuum mechanics to calculate stress changes

caused by fracture opening and propagation and pore pressure depletion at every timestep. 

• Fracture conductivity is calculated implicitly as a function of aperture, proppant concentration, and

effective normal stress. Proppant concentration and proppant pack conductivity also vary with 

effective normal stress due to proppant embedment and compaction curves. 

• Fractures are allowed to collide and/or connect dynamically with offset wells, allowing for the

simulation of parent-child relationships. Special boundary conditions are used in the wellbore to 

allow for production and crossflow within wells during frac hits. 

•Matrix compaction is modeled with isotropic or anisotropic pressure-dependent permeability,

allowing for permeability loss with depletion. 

2. Modelling Workflow

2.1 Project Area Overview 

The study area includes 10 wells from 2011 to 2021 vintages within the same general township. Some 

wells were unbounded for their entire lifetime, while others experienced parent-child relationships as 

offset wells were drilled into areas with differing levels of depletion. Eight of the 10 wells were drilled in 

the Haynesville, while two were drilled in the Bossier. Additionally, stage length and completion designs 

varied widely within the group: cluster spacing ranged from 15ft to 60ft, fluid loading ranged from 

approximately 40 bbl/ft to 110 bbl/ft, and proppant loading ranged from 1,300 lbs/ft to 4,600 lbs/ft. 

Multiple proppant types were utilized, including 100M, 40/70 Brown, 40/70 White, and 40/140M. The 

wide range of designs, vintages, drawdown strategies, and depletion configurations presented a unique 

opportunity for a well-constrained model by simultaneously matching all wells in the area. 

Figure 5 shows a map of the region with wells colored by approximate vintage. Blue wells are parent 

wells without any offset depletion. The red wells were drilled ~6 years after the offsetting blue well; the 

yellow wells were drilled ~4 years after the red wells.  

Figure 5. Overview of the core project phases. Phase 1 & 3 show map views while Phase 2 shows a gun-barrel view of the wells used for 

interference testing. Refer to Figure 3 for relative locations of each phase’s wells. 



URTeC: 4033310 9 

Figure 6. Correlations between completion parameters and DCA-derived gas EURs for various wells in the study area. 

Figure 7. Initial Shut-In Pressures (ISIPs) versus stage for the wells Phase 1 and 3. Frame (a) highlights all wells. Frame (b) highlights two wells 

with no prior depletion but the smallest completion size and widest cluster spacing. Frame (c) highlights one well showing potential depletion 

effects when entering the region of a parent well. 

Examining data from these 10 wells, several observations were gathered to propose hypotheses to key 

questions proposed at the beginning of the project—namely the explanation of damage mechanisms 

observed in well productivity—and to guide the modeling workflow. Figure 6 shows correlations 

between projected EURs and various stage design and completion design parameters. Unsurprisingly, 

there is a strong correlation between completion size and EUR; completion design is a large factor in 

relative performance. However, there is also an indication that depletion or frac inefficiency may be 

playing a role as child wells are underperforming parent wells with similar completions in some 

situations. In addition, completion size was observed to be an influence when comparing EUR and well 

spacing.  
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Figure 7 shows Initial Shut-In Pressures (ISIPs) versus stage for all wells in the study area. From frame 

(a), we observe possible indication of ISIP escalation for the several initial stages in each well, indicating 

the potential importance of stress shadowing in fracture propagation. Frame (b) highlights two wells with 

the smallest completion sizes and widest cluster spacing; markedly lower ISIPs for these wells (with no 

prior depletion) indicate possible support for stress shadowing increasing net pressures. An indication of 

possible depletion from parent wells is noted in frame (c), which highlights how one of the yellow wells’ 

ISIPs is reduced when it enters the potentially depleted zone. 

In the context of productivity degradation, the synthesis of several diagnostics indicated that some 

mechanism(s) to explain changing well productivity was/were necessary. For example, comparing RTA 

responses for wells with different cluster spacing made it unlikely that inter-frac interference was the sole 

cause of the bend in RTA response. A comparison of the productivity index over time of wells with 

differing drawdown strategies made it clear that the mechanism controlling conductivity was more driven 

by BHP than through a time component. Lastly, 3 of the 10 wells were on a single pad with interference 

tests run at initial production (POP), 6 and 12 months. These tests showed a clear reduction in 

communication between the wells over time. 

A plan was developed using these observations to allow the history-matching workflow to follow the 

most linear process possible. As shown in Figure 5, Phase 1 included the standing up of the model and a 

rough history match of 3 parent wells. Phase 2 would include interpreting the time-lapse interference tests 

and matching the observed SRV degradation in the model. Phase 3 applied the parameters matching SRV 

degradation to the remaining child wells in the model, refining the overall history match parameters with 

the observed parent-child effects. Each subsequent model calibration was reconciled with the prior model 

parameters to find a common parameter set. The hope was that a single set of model parameters could be 

arrived upon that accurately predicted fracturing and production performance across a range of well 

designs and developmental scenarios. 

Figure 8. Summary of the full project workflow 

2.2 Model and Stress Profile Construction 

Modeling began with the gathering and processing of the detailed data required to accurately model the 

10 wells in the project. This included well surveys, geosteering reports, well operational histories, 

production time series, perforating designs, treatment schedules, frac fluid rheologies, proppant 

specifications, black-oil models, and geologic properties. Data was continuously ingested and re-

presented to all participants to ensure consistent understanding and buy-in from all disciplines. 
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One key pre-processing step before history matching a model in the fully-coupled hydraulic fracturing 

and reservoir flow paradigm utilized in this study is calibration of the stress profile. (Singh et al., 2020) 

shows how changes in lithology can result in changes in stress (and stress gradient) across the vertical 

profile. This layering of lithologies can create various degrees of height containment of fractures. While 

stress profiles are commonly calculated from sonic log properties using a Modified Eaton’s Method 

(Thiercelin and Plumb, 1994; Blanton and Olson, 1999) or viscoelastic stress relaxation (VSR) method 

(Singh and Zoback, 2022), both methods require calibration to points of known stress. 

Given the known importance of the stress profile to fracture geometries and planned multi-bench 

development sensitivities, much care was taken in calibrating and upscaling the stress model for the 

numerical simulator. Eleven DFITs from wells in the Haynesville and Bossier were analyzed and 

determined to be valid, resulting in the determination of stress, permeability, and pore pressure. Stress 

estimates were generated utilizing the ‘compliance method’ as described by (McClure et al. 2019). 

Permeability and pore pressure estimates followed the methods described by (McClure et al. 2019) 

following the best practices described in (Mcclure et al., 2022). 

The left of Figure 9 shows the initial stress profile with the various DFITs depth-adjusted to match the 

log stratigraphy. Based on the DFITs' results, we reduced the pore pressure and stress in the Bossier 

intervals. Additionally, we reduced the stress in one of the Haynesville benches and smoothed out the 

stress profile in the Gilmer and Smackover. While some adjustments were made before beginning the 

Phase 1 history match, several were settled upon iteratively when undergoing Step 1 of the history 

matching workflow outlined below. 

Figure 9. Comparison of the original stress and pore pressure profiles before and after calibration to regional DFITs. 
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2.3 Phase 1 – Parent Wells History Match 

All phases of a well’s lifecycle are simulated in the model, resulting in the need for all fracturing and 

production characteristics to be matched simultaneously. To focus this effort, the various datasets 

discussed in Section 2.1 were summarized into a list of ‘key observations.’ This list of history-matching 

objectives is intended to distill historical observations from multiple data sources into a singular goal that 

the history-matched model should exhibit. The key observations with the model parameters used to 

achieve a match for Wells A, B, and C are shown in Figure 10. 

Type 

Calibration 
Key Model Characteristics Model Application 

ISIP 

Escalation 
ISIP escalation of 750 PSI. 

Put in place external fractures with estimates of fracture 

size, net pressure. 

Perforation 

efficiency 

Regional perf imaging data shows cluster efficiency of 75-85% 

for similar cluster spacings; data of post-frac perf diameter 

Erosion ‘alpha’ controlling erosion rate. Tensile strength 

to control cluster initiation. 

Fracture 

geometry 

Inferred constraints from interference tests in Phase 2 indicate a 

minimum fracture half-length of 600+ ft. Literature review 
(Younes et al. 2011) would suggest HSVL heights of 500-600 ft 

with more vertically concentrated growth into lower Bossier. 

Toughness, Relative Fracture Toughness, Stress Profile, 

Pressure Dependent Permeability (leakoff) 

Treating Data ISIPs 

Treating Data Average WHP during Treatment Wellbore friction multiplier 

Propped area 

geometry 

Inferred constraints from interference tests in Phase 2 indicate a 

minimum propped half-length of 600+ ft 
Maximum immobilized proppant per area 

Production 
Match GAS RTA Curves to create bend upward after 3000psi 

of depletion 

Initial early time match with permeability; Negative 

pressure dependent permeability; Kept in mind other 
mechanisms: time dependent conductivity loss, stress 

sensitive embedment, proppant conductivity curves for 

Phase 2 calibration 

Production Fine tune GWR 
Relative permeability curves; Fine tune flowback with 

water banking / water holdup 

Figure 10. Phase 1 history matching key observations. 

McClure et al. (2022) outlines a recommended framework for history matching in a simulator with a 

coupled fracturing and reservoir paradigm. A simplified general workflow is as follows: 

1. Utilize any available diagnostics to constrain fracture geometries through adjustments in the

stress profile, fracture toughness, and effective leak-off.

2. Match perforation efficiency through adjustments in perforation erosion and tensile strength.

3. Add external fractures to the sector model to match ISIP escalation and observed stress

shadowing.

4. Calibrate wellbore friction, near-wellbore tortuosity, and viscous pressure drop inside fractures to

match treating pressures and ISIPs.

5. Leverage information from interference tests to calibrate the size of the propped area.

6. Adjust bulk permeability, relative permeability curves, and pressure-dependent permeability to

match production trends for all streams.

This framework aims to keep the history-matching process as linear as possible. In practice, however, 

there are, by necessity, many iterative cycles. For instance, steps one and five above will likely be 

changed during the matching of the interference tests, which may necessitate adjustments to permeability. 
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The details of how each model parameter outlined in Figure 10 is adjusted to obtain a model match are 

unnecessary in this context. (Pudugramam et al., 2022; Fowler et al., 2023; Ratcliff et al., 2022) all 

provide detailed discussions on using these various tuning parameters in this numerical simulator. 

Highlighting one observation, Figure 11 shows regional data on cluster efficiency gathered through 

perforation imaging on 5 wells; average efficiency targets are shown as stars. Cluster efficiency clearly 

degrades with decreasing cluster spacing. Reduced isolation between clusters combined with greater 

levels of stress shadowing prevents a significant number of clusters from initiating. This data was used to 

tune perf erosion and tensile strength parameters to create a match for Wells A, B, and C. While these 

wells don’t include the full range of cluster spacings observed in this field data, a brief sensitivity on the 

Phase 1 history-matched model shows that the model is correctly capturing this effect (Figure 11). 

Figure 11 Cluster efficiency match in Phase 1 model with targets (stars) from regional observations. Different colors represent simulations with 

different random seeds to understand natural variances in the simulations. 

The goal of Phase 1 was to establish a general baseline for the potential stimulated reservoir volume 

(SRV) accessed by the parent wells, with the knowledge that further refinement would follow. With an 

initial history match of unbounded parents completed, the next steps were to begin exploring the various 

methods that could account for the observed SRV degradation in the field. 

As discussed in Section 1.4, five main physical mechanisms were identified that could decrease well 

productivity over time, as drawdown and net effective stress on the fractures increase. They include 

proppant pack conductivity, proppant pack compressibility, stress-sensitive proppant embedment, 

pressure-dependent permeability (matrix compaction), and time-dependent proppant conductivity loss. 

With several degrees of freedom due to these five parameters, a range of “bracketing” sensitivities were 

conducted to determine whether each factor was necessary but not sufficient, necessary and sufficient, or 

not necessary to match the level of productivity degradation observed in the field. In-house lab data was 

available for proppant pack conductivity, proppant embedment, and pressure-dependent permeability and 

was utilized to set the boundaries of realistic values for the sensitivities. 

Figure 12, Figure 13, and Figure 14, portray the sensitivities' results for pressure-dependent 

permeability, proppant embedment, and time-dependent conductivity loss. The lab data (blue) and the end 

members of the sensitivities (gray) are also shown for pressure-dependent permeability and proppant 

embedment. The dotted lines in the time series plots represent the field data, while the solid lines are the 

model results. 

Sensitivity results show each of these mechanisms, as bounded by lab data, theoretically can account for 

the overall magnitude of well productivity reduction. None of them individually perfectly match the 

observed flattening of the cumulative production curves often correlated with flowing bottom hole 

pressure (FBHP) reaching maximum drawdown. If taking a “yes and” approach by including each 

mechanism to a moderate extent, there would likely be non-uniqueness in the different combinations of 
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parameters to achieve a similar match. The interpretation of the interference tests in Phase 2 of the project 

was designed to help separate these functions and create a unique match. 

Figure 12. Left – Lab measurements of matrix compaction (negative pressure-dependent permeability). Middle and right – Pressure dependent 

permeability on two Phase 1 parent wells; sensitivity endpoints are bounded by gray curves from data. 

Figure 13. Left – Lab measurements of proppant conductivity and embedment. Middle and right – Embedment and proppant conductivity 

sensitivities on two Phase 1 parent wells; sensitivity endpoints are bounded by gray curves from data. 

Figure 14. Time dependent conductivity loss sensitivities on two Phase 1 parent wells. 

2.3 Phase 2 – Conductivity Degradation Characterization 

The center of Figure 5 shows the configuration of three wells studied as part of Phase 2 of the modeling 

workflows. Wells 1-3 are wine racked between two stratigraphic intervals in the Haynesville spaced at 

1,056 ft apart. They are in a similar geologic setting compared to the wells used for Phase 1 and 3 and 

have like completion designs. Time-lapsed interference tests were conducted for this pad at 1 month, 6 

months, and 12 months into production. Each time, all wells were shut in for several days, and the BHP 

was allowed to stabilize. Well 3 was brought back online, and the pressure response was monitored at 

Well 2; one day later, Well 1 was opened. 

The six interference tests were analyzed using the DQI method outlined in Section 1.3 to leverage this 

observation more quantitatively in the numerical model. This yielded estimates of the conductivities of 

the pathways connecting neighboring wells. As shown in Figure 15, the connection strength between 

wells degrades substantially over time, with conductivities 50% lower six months into production and 

80% lower 12 months into production relative to the well connections at one month. With data 
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specifically measuring fracture conductivity degradation, the effects of proppant conductivity, proppant 

embedment, and time-dependent conductivity loss could be separated from the reservoir effects of 

pressure-dependent permeability and cluster-to-cluster interference. 

Figure 15. Results from the DQI interpretation of the 6 interference tests conducted over the first year of production for Wells 1-3. 

A new model was constructed in the simulator to represent Wells 1-3, with the model parameters tuned 

from the Phase 1 history match. The exact timelines of the interference tests were also implemented in the 

simulator. This way, the DQI analysis of the interference tests in the model could be matched with field 

data and supported by 3D visualization. 

The intent of this workflow was to start with the most simple, necessary, and physically plausible 

mechanisms first and add complexity as necessary. The general matching workflow was as follows: 

1. Start with the average values from lab data on pressure-dependent permeability, proppant

conductivity, and embedment. Increase fracture size and propped area until visual confirmation of

fracture connections and proppant bridging between wells is observed. In the simulator, this was

accomplished through a reduction in ‘relative fracture toughness’ and ‘maximum immobilized

proppant’. The propped area was calibrated such that the tips of the proppant pack just barely

overlapped.

2. Adjust proppant ‘k0’ (the scaling factor for proppant conductivity at zero effective normal stress)

until the conductivity of the first test is matched. The ‘best-fit’ k0 was just below the mid-point

supported by the spread of lab data.

3. If necessary, adjust the proppant pack compressibility to match six and twelve-month tests.

4. If necessary, adjust the level of stress-sensitive embedment to match six and twelve-month tests.

Steps three and four were ultimately calibrated simultaneously. Proppant pack compressibility

alone could match Test 2 well, but not simultaneously with Test 3. Combining the two parameters

around the midpoints supported by lab data yielded the best match. Figure 16 shows an example

of a single-variable sensitivity on stress-sensitive embedment, showing the increased level of

conductivity degradation with increasing embedment.

5. If necessary, add time-dependent conductivity loss to match six and twelve-month tests.

Ultimately, this parameter wasn’t necessary to match the interference test data, but the option

remained open to add it in Phase 3 of the modeling workflow to further tune EURs if necessary.
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Figure 16. Example of conductivity degradation as a function of increasing embedment. 

The 3D results of this interference calibration process area are shown in Figure 17. For each test, the 

screenshot is taken roughly three hours after the POP of Well 3, but before the POP of Well 2. The first 

column shows the interference test with varying pressures as the tests were taken at different times in the 

wells’ life. In the middle column, the propped areas between each well just barely overlap. While the size 

of this proppant cloud doesn’t change significantly over time, the fracture conductivity shown in the right 

column does degrade over time; the red circles indicate this in 

Figure 17. Due to proppant pack compressibility and embedment, the number and strength of the 

conductive pathways between wells are reduced over time until there are only weak connections by test 

three. This is a visual confirmation of the DQI tests through time. 

The red triangles in Figure 15 show the DQI calculated conductivities from the calibrated model 

compared with those calculated from the field data. There is a satisfactory match. 
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Figure 17. Visualization of Well 1-3 fracture geometries after interference test conductivity loss calibration. Each test is shown right after the 

POP of Well 3 (right) before the POP of Well 2. 

2.4 Phase 3 – Child Wells History Match 

Calibration from pressure interference tests provided confidence in the size of propped and unpropped 

fracture networks and an understanding of how SRV may shrink over time as net effective stress 

increases. Leveraging this information any remaining bend in the RTA curves can be attributed to 

reservoir effects. 

The parameters from this ‘conductivity history match’ were applied to the model with Wells A and B and 

to the extended Well C model, now including Wells D, E, F, and G. This new model included all well 

histories for the three vintages, including differing frac jobs, completion designs, and stage lengths. 

Boundary controls included all shut-ins and pre-loads applicable to the multiple generations of parent-

child wells. 

Step 6 of the history matching process outlined in Section 2.3 was repeated for all 7 wells concurrently. 

Automated history matching workflows were run to simultaneously adjust permeability, relative 

permeability curves, negative pressure dependent perm (bounded by lab data), water banking, and 

parameters to best match the production series for the 7 wells. No additional adjustments to fracture 

geometries nor propped areas were made. The resulting production history matches are shown in Figure 

18 and Figure 19. 

The wells modeled in this region had a variety of completion designs, parent-child configurations, and 

Haynesville / Bossier co-development, as shown in Figure 5 and Figure 6. The simultaneous match of all 

these wells with a singular model parameter set yielded confidence in the model’s predictive capabilities. 

Additionally, the workflow characterization of the dynamic fracture conductivities through interference 

testing provided confidence in a unique solution without excessive overfitting. 
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Figure 18. Final production history matches for 7 wells in core study area 

Figure 19. Comparison between model EUR predictions and decline curve-derived EURs 

3. Model Validation and Sensitivities

The calibrated model parameters were employed to investigate a variety of design sensitivities. Design 

sensitivities were conducted for Haynesville and Bossier intervals on cluster spacing, stage length, well 

spacing, proppant loading, fluid loading, landing zone, and limited entry. Also tested were various 

development scenarios exploring inter-bench and intra-bench depletion under varying well spacings, well 

ages, parent designs, and child designs. While a deep review of these results is out of scope for this paper, 

an example of a model validation while reviewing field data warrants discussion. 

Recent efforts in field data surveillance had aggregated ISIPs for several wells with varying cluster 

spacings. This field data observed an aggregate of 100 psi increase in ISIPs when tightening cluster 
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spacing from 20ft to 10ft. As is shown in Figure 20, a sensitivity analysis on cluster spacing from a base 

case Haynesville well design predicts a similar ISIP trend. Given that these wells were not part of the data 

used to calibrate this model, greater confidence in the predictivity of this parameter set was developed. 

Figure 20. Model ISIPs for different cluster spacings 

4. Conclusions

A numerical simulation generating a history match of rates and pressures may be one of thousands of 

non-unique solutions. Calibration points applied to frac geometry and reservoir depletion are critical to 

increasing the uniqueness of the solution and improving confidence in the model. Data from laboratory 

and field diagnostic tests in the representative area can be applied to refine the range of potential 

outcomes for each "tuning parameter" within the model. While examining each diagnostic individually 

may yield a broad spectrum of possible outcomes, integrating multiple diagnostics allows a continual 

narrowing toward a more definitive solution. This paper reviewed the framework for the application of 

traditional calibration techniques and introduced the utilization of additional tailored calibrations for 

increased accuracy. The approach to bolster model confidence encompasses the following steps: 

1. Base Stress Profile – Incorporated eleven toe DFITs in multiple landing zones to calibrate the

vertical stress profile

2. Utilized stimulation data such as ISIP observations to determine stress shadow effects

3. Initial History Match – Phase 1: Parent wells

4. Pressure Dependent Permeability and Embedment Laboratory Data – Utilized lab data to generate

ranges of model input parameters

5. Phase 2: Time-Lapse DQI testing – This testing substantially narrowed the range of feasible

solutions. This particularly supported the calibration of embedment and pressure-dependent

permeability inputs, which were found to be the primary driver of reduced conductivity as

reservoir pressure decreases.

6. Darkvision – Post Job Perforation Analysis - Correlated cluster-to-cluster stress shadow effects

to cluster efficiency based on a number of parameters including limited entry and cluster spacing

7. Final History Match – Phase 3: Child Wells – Using model inputs from above, history matched

additional wells including various development styles, completion vintages, and depletion

conditions from offsets (parent/child effects)

8. Empirical Frac Gradient / ISIP - Ran sensitivities on completion to generate modeled ISIP output,

cross-checked with field observations correlated to Cluster spacing, and Co-Development
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While all of the above were included in the study, parameters of significant impact to the project are in 

bold. 

The application of a robust set of DFIT data points in multiple horizons effectively provided a vertical 

stress profile in the zone of interest, thereby increasing confidence in the predicted frac growth. In 

addition, time-lapse interference testing was incorporated as a model constraint. While interference 

testing is not believed to be solely sufficient to describe fracture interaction, as it lacks a description of the 

number or location of connections, this data provided crucial information relating to fracture conductivity 

changes over time/pressure depletion. Incorporation of this data supported the separation of fracture 

conductivity loss caused by mechanisms such as proppant embedment from reservoir effects such as 

pressure-dependent permeability. Finally, post-frac perforation analysis combined with history matching 

of ten wells with variable completion vintages, spacing, parent/child developments, and co-development 

of multiple horizons increased confidence that a sufficiently unique solution had been achieved. The 

resulting set of modeling parameters was well-constrained and increased confidence in the model’s 

accurate representation of the investigated area. 

This paper provided a comprehensive examination of the history matching process in a physics-based 

numerical model, highlighting its value through the integration of various data types to corroborate 

observations across multiple types of analyses. The study facilitated an enhanced understanding of how 

predictive modeling can be strategically applied to optimize numerous variables, such as drawdown 

strategies, completion optimization, spacing, and co-development/targeting scenarios. The development 

of a model with high confidence levels presents compelling evidence that supports the implementation of 

testing scenarios for the future advancement of Chesapeake Energy. 
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